perm filename FOO.LSP[W82,JMC] blob
sn#632549 filedate 1982-01-11 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 proof?
C00015 00003 (∀e phi |λu.(u*v)*w = u*(v*w)| listinduction nil sortinfo)
C00023 ENDMK
C⊗;
proof?
* LISPX started.
*
*
*
*
*
*
*
*
*
*
*
* 12. ∀U.SEXP U
ctxt: (1 11) deps: NIL
*
;Loading LET 90
* 13. ∀X U.LISTP X~U
ctxt: (1 2 7 10) deps: NIL
*
*
* 14. ∀U.NULL U≡U=NNIL
ctxt: (1 5 9) deps: NIL
* 15. NULL NNIL
ctxt: (5 9) deps: NIL
*
* 16. ∀X Y.SEXP X~Y
ctxt: (2 7 11) deps: NIL
*
* 17. ∀X Y.¬ATOM X~Y
ctxt: (2 7 9) deps: NIL
*
*
* 18. ∀X U.¬NULL X~U
ctxt: (1 2 7 9) deps: NIL
*
*
* 19. ∀X U.CAR (X~U)=X
ctxt: (1 2 7 8) deps: NIL
*
* 20. ∀X U.CDR (X~U)=U
ctxt: (1 2 7 8) deps: NIL
*
* 21. ∀X Y.CAR (X~Y)=X
ctxt: (2 7 8) deps: NIL
*
*
* 22. ∀X Y.CDR (X~Y)=Y
ctxt: (2 7 8) deps: NIL
*
*
* 23. ∀PHI.PHI(NNIL)∧(∀X U.PHI(U)⊃PHI(X~U))⊃(∀U.PHI(U))
ctxt: (1 2 4 5 7) deps: NIL
*
* 24. ∀PHI.(∀X.ATOM X⊃PHI(X))∧(∀X Y.PHI(X)∧PHI(Y)⊃PHI(X~Y))⊃(∀X.PHI(X))
ctxt: (2 4 7 9) deps: NIL
*
*
* 26. ∀U V.LISTP U*V
ctxt: (1 10 25) deps: NIL
*
* 27. ∀U V.U*V=IF NULL U THEN V ELSE CAR U~(CDR U*V)
ctxt: (1 7 8 9 25) deps: NIL
*
*
*
* 30. ∀X.LISTP LIST(X)
ctxt: (2 10 29) deps: NIL
*
* 31. ∀X.LIST(X)=X~NNIL
ctxt: (2 5 7 29) deps: NIL
*
* 32. ∀X Y.LISTP LIST(X,Y)
ctxt: (2 10 29) deps: NIL
*
* 33. ∀X Y.LIST(X,Y)=X~LIST(Y)
ctxt: (2 7 29) deps: NIL
*
* 34. ∀X Y Z.LISTP LIST(X,Y,Z)
ctxt: (2 10 29) deps: NIL
*
* 35. ∀X Y Z.LIST(X,Y,Z)=X~LIST(Y,Z)
ctxt: (2 7 29) deps: NIL
*
* 36. ∀U.LISTP REVERSE U
ctxt: (1 10 28) deps: NIL
*
* 37. ∀U.REVERSE U=IF NULL U THEN NNIL ELSE REVERSE (CDR U)*LIST(CAR U)
ctxt: (1 5 8 9 25 28 29) deps: NIL
*
* 38. ∀U.NNIL*U=U
ctxt: (1 5 25) deps: NIL
*
*
* 39. ∀X U V.X~U*V=X~(U*V)
ctxt: (1 2 7 25) deps: NIL
*
*
* 40. ∀U V W.(U*V)*W=U*(V*W)
ctxt: (1 25) deps: NIL
* 41. ∀U V.REVERSE (U*V)=REVERSE V*REVERSE U
ctxt: (1 25 28) deps: NIL
*
* 43. ∀X U.FLAT(X,U)=IF ATOM X THEN X~U ELSE FLAT(CAR X,FLAT(CDR X,U))
ctxt: (1 2 7 8 9 42) deps: NIL
*
*
* 45. ∀X.FLATTEN(X)=IF ATOM X THEN LIST(X) ELSE FLATTEN(CAR X)*FLATTEN(CDR X)
ctxt: (2 8 9 25 29 44) deps: NIL
*
* 46. ∀X U.LISTP FLAT(X,U)
ctxt: (1 2 10 42) deps: NIL
*
;;; lispx.lsp[f81,jmc] ekl axioms for lisp with infixes
(proof lispx)
(DECL (U u0 u1 u2 u3 v v0 v1 v2 v3 W w0 w1 w2 w3) |ground| variable listp)
(DECL (X Y Z) |GROUND| VARIABLE sEXP)
(DECL (A B C) |GROUND| VARIABLE)
(DECL (PHI) |GROUND→TRUTHVAL| VARIABLE)
(DECL (NNIL) |GROUND| CONsTANT LIsTp)
(DECL (CONs) |GROUND⊗GROUND→GROUND| CONsTANT)
(DECL (~) |GROUND⊗GROUND→GROUND| CONsTANT NIL INFIX 850)
(DECL (CAR CDR) |GROUND→GROUND| CONsTANT nil unary 950)
(DECL (ATOM NULL) |GROUND→TRUTHVAL| CONsTANT nil unary 750)
(DECL (LIsTp) |GROUND→TRUTHVAL| CONsTANT nil unary 750)
(DECL (sEXP) |GROUND→TRUTHVAL| CONsTANT nil unary 750)
(AXIOM |∀U.sEXP U |)
(lname sortinfo *)
(AXIOM |∀X U.LISTP X~U |)
(lname sortinfo (sortinfo *))
(lname simpinfo (*))
(AXIOM |∀U.NULL U ≡ U=NNIL|)
(axiom |null nnil|)
(lname simpinfo (* simpinfo))
(AXIOM |∀X Y.SEXP X~Y|)
(lname sortinfo (sortinfo *))
(AXIOM |∀X Y.¬ATOM X~Y|)
(lname consfacts *)
(lname simpinfo (* simpinfo))
(AXIOM |∀X U.¬NULL X~U|)
(lname consfacts (* consfacts))
(lname simpinfo (* simpinfo))
(AXIOM |∀X U.CAR (X ~ U) = X|)
(lname simpinfo (* simpinfo))
(AXIOM |∀X U.CDR (X~U) = U|)
(lname simpinfo (* simpinfo))
(AXIOM |∀X Y.CAR (X ~ Y) = X|)
(lname consfacts (* consfacts))
(lname simpinfo (* simpinfo))
(AXIOM |∀X Y.CDR (X~Y) = Y|)
(lname consfacts (* consfacts))
(lname simpinfo (* simpinfo))
(AXIOM |∀PHI.PHI(NNIL)∧(∀X U.PHI(U)⊃PHI(X~U))⊃(∀U.PHI(U))|)
(lname listinduction (*))
(AXIOM |∀PHI.(∀X.ATOM X ⊃ PHI(X))∧(∀X Y.PHI(X)∧PHI(Y)⊃PHI(X~Y))⊃(∀X.PHI(X))|)
(lname sexpinduction (*))
;;; Common defined functions
(DECL (*) |GROUND⊗GROUND→GROUND| CONsTANT NIL INFIX 840)
(axiom |∀u v.listp(u*v)|)
(lname sortinfo (sortinfo *))
(AXIOM |∀U V.(U*V)=IF NULL(U) THEN V ELsE CAR U ~ (CDR U *V)|)
(lname definfo (*))
(decl (reverse) |ground→ground| constant nil unary 950)
(decl list |ground* → ground| functional)
(axiom |∀x.listp(list(x))|)
(lname sortinfo (sortinfo *))
(axiom |∀x.list(x) = x~nnil|)
(lname simpinfo (* simpinfo))
(axiom |∀x y.listp(list(x,y))|)
(lname sortinfo (sortinfo *))
(axiom |∀x y.list(x,y) = x~list(y)|)
(lname simpinfo (* simpinfo))
(axiom |∀x y z.listp(list(x,y,z))|)
(lname sortinfo (sortinfo *))
(axiom |∀x y z.list(x,y,z) = x~list(y,z)|)
(lname simpinfo (* simpinfo))
(axiom |∀u.listp(reverse(u))|)
(lname sortinfo (sortinfo *))
(axiom |∀u.reverse(u) = if null(u) then nnil
else reverse(cdr u) * list(car u)|)
(lname definfo (* definfo))
;;; theorems taken as axioms for further proofs
(axiom |∀u.nnil*u=u|)
(lname appendfacts (*))
(lname simpinfo (* simpinfo))
(axiom |∀x u v.x~u*v = x~(u*v)|)
(lname appendfacts (appendfacts *))
(lname simpinfo (* simpinfo))
(axiom |∀u v w.(u*v)*w = u*(v*w)|)
(axiom |∀u v.reverse(u*v) = reverse v * reverse u|)
;;; flat(x,u) has an imbedded call
(decl (flat) |ground⊗ground→ground| constant)
(axiom |∀x u.flat(x,u) = if atom x then x~u else flat(car x,flat(cdr x, u))|)
(lname definfo (* definfo))
(decl (flatten) |ground → ground| constant)
(axiom |∀x.flatten(x) = if atom x then list(x)
else flatten(car x)*flatten(cdr x)|)
(lname definfo (* definfo))
(∀E PHI |λX.∀U.LISTP FLAT(X,U)| sexpinduction
|nil*([1#1#1]($definfo**sortinfo))*nil*([1#2#1#2]($definfo**sortinfo))
**simpinfo*nil*([1](der))*nil|
sortinfo)
;;;;
47. (∀X.ATOM X⊃(∀U.X~U=LIST(X)*U))∧
(∀X Y.(∀U.FLAT(X,U)=FLATTEN(X)*U)∧(∀U.FLAT(Y,U)=FLATTEN(Y)*U)⊃
(∀U.FLAT(X~Y,U)=FLATTEN(X~Y)*U))⊃(∀X U.FLAT(X,U)=FLATTEN(X)*U)
ctxt: (1 2 7 9 25 29 42 44) deps: NIL
* 48. (∀X.ATOM X⊃(∀U.X~U=LIST(X)*U))∧
(∀X Y.(∀U.FLAT(X,U)=FLATTEN(X)*U)∧(∀U.FLAT(Y,U)=FLATTEN(Y)*U)⊃
(∀U.FLAT(X~Y,U)=FLATTEN(X~Y)*U))⊃(∀X U.FLAT(X,U)=FLATTEN(X)*U)
ctxt: (1 2 7 9 25 29 42 44) deps: NIL
* ;PDL-OVERFLOW
QUIT
* .....done.
*
proof?
* .....done.LISPX read in
proof?
* switched to LISPX
*
(proof lispx)
49. (∀X.ATOM X⊃(∀U.X~U=LIST(X)*U))∧
(∀X Y.(∀U.FLAT(X,U)=FLATTEN(X)*U)∧(∀U.FLAT(Y,U)=FLATTEN(Y)*U)⊃
(∀U.FLAT(X~Y,U)=FLATTEN(X~Y)*U))⊃(∀X U.FLAT(X,U)=FLATTEN(X)*U)
ctxt: (1 2 7 9 25 29 42 44) deps: NIL
* 50. (∀X.ATOM X⊃(∀U.X~U=X~NNIL*U))∧
(∀X Y.(∀U.FLAT(X,U)=FLATTEN(X)*U)∧(∀U.FLAT(Y,U)=FLATTEN(Y)*U)⊃
(∀U.FLAT(X~Y,U)=FLATTEN(X~Y)*U))⊃(∀X U.FLAT(X,U)=FLATTEN(X)*U)
ctxt: (1 2 5 7 9 25 42 44) deps: NIL
* 51. (∀X.ATOM X⊃(∀U.X~U=X~LIST(Y1,Z)*U))∧
(∀X Y.(∀U.FLAT(X,U)=FLATTEN(X)*U)∧(∀U.FLAT(Y,U)=FLATTEN(Y)*U)⊃
(∀U.FLAT(X~Y,U)=FLATTEN(X~Y)*U))⊃(∀X U.FLAT(X,U)=FLATTEN(X)*U)
ctxt: (1 2 7 9 25 29 42 44 51) deps: NIL
* 52. (∀X.ATOM X⊃(∀U.X~U=X~LIST(Y1,Z)*U))∧
(∀X Y.(∀U.FLAT(X,U)=FLATTEN(X)*U)∧(∀U.FLAT(Y,U)=FLATTEN(Y)*U)⊃
(∀U.FLAT(X~Y,U)=FLATTEN(X~Y)*U))⊃(∀X U.FLAT(X,U)=FLATTEN(X)*U)
ctxt: (1 2 7 9 25 29 42 44 52) deps: NIL
*
(∀e phi |λx.∀u.flat(x,u)=flatten(x)*u| sexpinduction
|nil*([1#1#1]($definfo*$definfo*$definfo*$simpinfo**sortinfo))*nil|
sortinfo)
proof?
.....done.LISPX read in
proof?
* switched to LISPX
*
(proof lispx)
49. LIST(X)*U=X~NNIL*U
ctxt: (1 2 5 7 25 29) deps: NIL
* 50. LIST(X)*U=IF NULL X~NNIL THEN U ELSE CAR (X~NNIL)~(CDR (X~NNIL)*U)
ctxt: (1 2 5 7 8 9 25 29) deps: NIL
* 51. LIST(X)*U=X~U
ctxt: (1 2 7 25 29) deps: NIL
* 52. LIST(X)*U=X~U
ctxt: (1 2 7 25 29) deps: NIL
*
(∀e phi |λu.(u*v)*w = u*(v*w)| listinduction nil sortinfo)
(rw * |*appendfacts*nil| sortinfo)
(trw |∀x u.(u*v)*w = u*(v*w) ⊃ x~((u*v)*w)=x~(u*(v*w))| |der|)
(rw 37 |*38*nil|)
(∀i (v w) )